Solar System

Kit Contents

Important!

Do not remove the parts from the frames until they are needed so that you can locate the numbered parts during assembly,

Our tech support team will be glad to help you! USA: supportathamesandkosmos.com or 1-800-587-2872 UK: supportathamesandkosmos.co.uk or 01580713000

A WORD TO PARENTS AND ADULTS

With this science kit, your child can build a model of the solar system with a windup motor inside. Please read the instructions and safety information with your child before starting. Stand by to assist your child should they need any help with assembling and operating the solar system model.
Some of the assembly steps are challenging, so pay close attention to the instructions and illustrations.

We hope you and your child have a lot of fun experimenting with the Orbiting Solar System!

SAFETY INFORMATION

WARNING! Not suitable for children under 3 years. Choking hazard - small parts may be swallowed or inhaled. Keep packaging and instructions as they contain important information.

ASSEMBLY VIDEO!
Scan this QR code to view a step-by-step assembly video and tips on how to use the Orbiting Solar System.

- Remove the parts from the frames only when they are needed.
- Remove excess material (burrs) from the parts before assembling them. Normal scissors do not cut as precisely as diagonal cutters, so you may have to file some of the rough edges down with a nail file or sandpaper.
- Everything must be assembled in order!

- During each assembly step involving gears, make sure the newly added gears are meshing with the gears already in place.

Packaging design and layout: Dan Freitas; Packaging images: Genius Toy Taiwan Co., Ltd., Taichung, Taiwan, R.O.C., Kosmos, and Thames \& Kosmos
The publisher has made every effort to identify the owners of the rights to all photos used. If there is any instance in which the owners of the rights to any pictures have not been acknowledged, they are asked to inform the publisher about their copyright ownership so that they may receive the customary image fee.

Distributed in North America by Thames \& Kosmos, LLC. Providence, RI 02903
Phone: 800-587-2872; Web: www.thamesandkosmos.com
Distributed in United Kingdom by Thames \& Kosmos UK LP. Cranbrook, Kent TN17 3HE
Phone: 01580 713000; Web: www.thamesandkosmos.co.uk
We reserve the right to make technical changes.
Printed in Taiwan / Imprimé en Taiwan

ASSEMBLY INSTRUCTIONS: 1 OF 5

1 Push the sun axis (F6) in as far as it will go. Turn it clockwise 90 degrees.

2

3

4
 orientation of the disk.

(1)
\rightarrow
(2)

Turn it upside down.

(1) Make sure all the gears mesh and the holes align.

Rotate the upper disk 90 degrees clockwise to lock it in place.

After

6
Pay attention to the orientation of the gear.

Make sure the holes in the disks are aligned.
(1)
(c) Pay attention to the orientation of the motor box.

Press it all the way on.

\rightarrow

7
Pay attention to the orientation of the ratchet.

Press it all the way on.

Windup

motor box

F4 Pay attention to the orientation of the escape wheel.
 of the escapement.

Press it all the way on.

1

(c) Test the device: Turn the dial counterclockwise a few clicks and let go. If all the disks rotate as the motor runs, it is properly assembled. If not, disassemble and go back through the assembly steps.

ASSEMBLY INSTRUCTIONS: 4 OF 5

10
Insert the ends of the rods into the holes. Use the rod sizing guide to the left to determine which rod is which.

You don't need to install the rods exactly as shown, but to make sure the planets don't collide, shorter' rods must always be installed above longer rods.

12 Assemble the eight planets. For each planet, match the clear planet hemispheres with the graphics for that planet. Carefully peel one graphic off of the sheet. Press it into one hemisphere with the printed side facing out. Use your fingers or the tool (B29) to press the graphic to the inside of the hemisphere and smooth out any bubbles. Reposition if necessary. It's okay if it's not perfectly adhered - it will still look good inside the clear planet sphere. Repeat for each hemisphere. Then press the two hemispheres together to complete the planet.

\longrightarrow B29

Tip! If you want to customize your planets, you can paint the insides of the spheres with model paint!

ASSEMBLY INSTRUCTIONS: 5 OF 5

14
Insert each planet into

EXPERIMENT: WIND IT UP

1 To make the planets orbit the sun, put your fingers into the three circular holes on the dial and turn it counterclockwise up to seven times and let go. Don't wind it up more than seven times (56 audible clicks) or you might break the coil spring mechanism inside the windup motor.

©9.9) WHAT'S HAPPENins?

You built an orrery! An orrery is a mechanical model of the solar system (or of just the Sun, Earth, and Moon) that shows the relative position and motion of the planets around the Sun. This orrery uses a special type of gear called a planetary gear to move. This is simply a gear train in which one gear revolves around the other - much like how the planets revolve around (or orbit) the Sun. This makes it the perfect device with which to model the solar system. Of course, the real Sun doesn't have gears inside and

Illustration of a planetary gear rods holding up each planet. In the actual solar system, the motion of the planets is powered by the force of gravity!

Eight planets orbit the Sun. Each planet is moving on its own elliptical (nearly circular) path around the Sun. Each planet is a different distance from the Sun and orbits at a different speed - the closer to the Sun, the faster the planet orbits! The planets all have different sizes, masses, and compositions. The solar system you built in this kit is a model. This means it represents some characteristics of the real thing, but obviously not every characteristic. Here are some facts about each planet.

URANUS
Distance from Sun: 2.9 billion km Diameter: $51,000 \mathrm{~km}$
Mass: 15 Earths
Orbital speed: $6.8 \mathrm{~km} / \mathrm{s}$
Orbital period: 84 Earth years
Number of moons: 27
Composition: Gases and ice

SATURN

Distance from Sun: 1.4 billion km
Diameter: $121,000 \mathrm{~km}$
Mass: 95 Earths
Orbital speed: $9.7 \mathrm{~km} / \mathrm{s}$
Orbital period: 29 Earth years
Number of moons: 82
Composition: Gases and ice Distance from Sun: 150 million km

ALL ABOARD THE GEAR TRAIN!

Your solar system model only has one motor. So how does it make the planet models revolve at four different speeds? The answer to this lies in the gear train (also known as a transmission) inside the model. It is made of many gears with different numbers of teeth. When one gear is turning another gear, the smaller gear with fewer teeth turns faster than the larger gear with more teeth. The ratio between the speeds of two gears in a transmission is called the gear ratio.

Distance from Sun: 110 million km Diameter: $12,100 \mathrm{~km}$
Mass: 0.8 Earths Orbital speed: $35.0 \mathrm{~km} / \mathrm{s}$ Orbital period: 225 Earth days Number of moons: 0 Composition: Rocky with dense atmosphere

Diameter: 1.4 million km
Mass: 333,000 Earths
Composition: Hydrogen fusing into helium, producing heat and light When you put multiple layers of gears together, as in this model, you can make each layer progressively slower. transmission) inside the model. It is made of many gears
with different numbers of teeth. When one gear is turning

Diameter: $12,800 \mathrm{~km}$
Mass: $5.97 \times 10^{24} \mathrm{~kg}$ ($=1$ Earth) Orbital speed: $29.8 \mathrm{~km} / \mathrm{s}$ Orbital period: 365 Earth days Number of moons: 1 Composition: Rocky with liquid water and thick atmosphere MERCURY Distance from Sun: 60 million km Diameter: $4,900 \mathrm{~km}$ Mass: 0.06 Earths Orbital speed: $47.4 \mathrm{~km} / \mathrm{s}$ Orbital period: 88 Earth days Number of moons: 0 Composition: Rocky with dense metallic molten core

